The Effect of Spoiler Deflection On Airplane Braking Performance

John J. O'Callaghan National Resource Specialist – Aircraft Performance Office of Research and Engineering

ANETY BOARD

Braking Forces on a Tire: Spoilers Stowed

Wing lift reduces weight on wheels and braking force

Weight on Wheels = Airplane Weight - Lift

Braking Forces on a Tire: Spoilers Deployed

Spoilers reduce lift, increasing weight on wheels and braking force

Effect of Spoilers on Stopping Performance 180 Runway 160 end 140 kts. 120 speed, 100 Α 80 -A: AA1420 Actual Performance B **B: Predicted Performance - No Spoilers** Ground 60 - C: Predicted Performance - With Spoilers 40 Touchdown 20 point С 0 6000 2000 4000 7000 1000 3000 5000 8000 Ω

Distance from runway 4R threshold, ft. National Transportation Safety Board

The Effect of Spoiler Deflection On Airplane Braking Performance

John J. O'Callaghan National Resource Specialist – Aircraft Performance Office of Research and Engineering

Flight Crew Performance: Operational Factors

Captain Dave Tew Operational Factors Investigator

OPERATIONAL ISSUES

- Spoilers
- Crosswind Limits for Landing
- Stabilized Approach Guidance
- Rudder Blanking
- Braking

SPOILERS ARMED FOR LANDING

- Training and normal operating inconsistencies
- Neither pilot armed the spoilers
- Checklist did not require confirmation by the captain and first officer

CROSSWIND LANDING LIMITS

- Determined by runway conditions or runway visual range (RVR)
- Several wind reports given to the crew during the approach that exceeded AA landing limitations
- <u>Result</u>: Crosswind limitation for landing was exceeded

STABILIZED APPROACH PROCEDURES

- <u>Required</u>: Airplane configured to final flap setting prior to descending below 1,000 feet above field level (AFL) in instrument meteorological conditions (IMC)
- <u>Actual</u>: Final flap setting not completed until about 900 feet AFL - first officer
 prompted captain

STABILIZED APPROACH PROCEDURES

- <u>Required</u>: Airplane remain on proper flight path below 1,000 feet above field level (AFL)
- Acceptable deviations from flight path not defined
- First officer believed flight was unstabilized at about 400 feet AFL

SPOILERS

- If armed extend automatically after landing
- Not armed prior to landing
- No automatic or manual extension occurred after landing
- No verbal confirmation of extension or nonextension required
- No verbal spoiler announcement recorded on CVR

REVERSE THRUST

- Reverse thrust normally limited to 1.6 engine pressure ratio (EPR) power setting
- Excessive reverse thrust causes directional control problems –one is that it blanks out the rudder affecting rudder efficiency
- AA reverse thrust limited to 1.3 EPR on slippery runway

REVERSE THRUST

- <u>CVR</u> no discussion of reverse thrust limits prior to landing
- <u>FDR</u> left engine reached 1.98 EPR & right engine reached 1.74 EPR
- <u>CVR</u> no recognition by crew that reverse thrust limitations exceeded

BRAKING

- AA Max autobrakes or aggressive manual braking on short, slippery runway
- Captain elected to use manual braking
- 5 &10 seconds after touchdown before brake pedals began to move
- 11 seconds after touchdown before full braking was applied
- Max Autobrakes activate 1-2 seconds after touchdown and braking continuously applied

Flight Crew Performance: Operational Factors

Captain Dave Tew Operational Factors Investigator

Flight Crew Performance: Human Factors

Evan Byrne, Ph.D. Human Performance Investigator

Reasons for Degraded Performance

• Fatigue

Approaching thunderstorms

Evidence for Fatigue - Conditions

Cumulative sleep loss

Continuous hours of wakefulness

Circadian disruption

Evidence for Fatigue - Conditions

- Cumulative sleep loss: <u>no factor</u>
- Continuous hours of wakefulness: <u>at least 16</u>
 <u>hours</u>
- Circadian disruption: <u>accident occurred 2</u> <u>hours past normal bedtime</u>

Evidence for Fatigue – Outcome

- Performance errors
 - Checklists (spoiler not armed)
 - Recall (final flap setting confusion)
 - Information processing (*wind readback error*)
- Decision-making

Role of Approaching Thunderstorms

• Threat to be addressed

Created additional workload

Required directed attention

Improper Decision-Making

- Workload and stress can degrade decision-making via:
 - narrowing of attention
 - incomplete situation assessment
 - increased tendency to continue with original plan

Reasons for Degraded Performance

 Fatigue and the effects of the crew's response to the weather threat were factors

 Relative contribution of these factors cannot be determined

Industry Standards & Practices

Industry Standards & Practices

- Avoidance of thunderstorms is advocated
- Thunderstorm penetration has occurred
 - Accidents and incidents
 - Research using operational data

Industry Standards & Practices MIT Study

- NASA-sponsored research conducted by Massachusetts Institute of Technology's Lincoln Laboratory
- Examined air carrier operations approaching Dallas-Fort Worth International Airport when thunderstorms were in the terminal area

Industry Standards & Practices MIT Study

- Most of the encounters near the destination airport resulted in penetrations rather than deviations
- Penetrations were more likely when airplane was:
 - following another airplane
 - behind schedule
 - flying after dark

Industry Standards & Practices Operational Guidance

- Guidance is provided on thunderstorm avoidance
 - General advisory information
 - Specific operational guidance
- Specific operational guidance and criteria can facilitate flight crew decision-making under adverse situations

